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a b s t r a c t 

Calibrating stereo digital image correlation (stereo-DIC) is crucial for 3D deformation measurements. Existing 

stereo-DIC calibration methods mainly rely on a well-made planar target with additional specific coding to per- 

form pre-calibration. In this paper, a new method is proposed to calibrate a stereo-DIC system automatically with 

feature correspondences in an unconstrained scene. In contrast to traditional methods, the proposed method is 

scale-independent and does not require assumptions such as planarity. More importantly, it is capable of cor- 

recting disturbed external parameters in real time. With inverse depth parameterization, a stereo-DIC system can 

be effectively calibrated by a carefully designed bundle adjustment framework. Subsequently, a fast correction 

strategy based on massive-point subset tracking is derived to recalibrate the disturbed stereo-DIC system. The 

proposed method overcomes the predicament of reduced measurement accuracy due to the unavoidable distur- 

bance of external parameters in dynamic deformation measurements. Experiments were conducted to verify the 

effectiveness of the proposed method. 
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. Introduction 

Stereo digital image correlation (stereo-DIC) technology is increas-

ngly used to characterize the behavior of materials and structures un-

ergoing deformations. Stereo-DIC is stereo computer vision-based, full-

eld, and non-contact deformation measurement technology, and it

ainly relies on accurate system calibration to reduce reconstruction

rrors in order to obtain reliable deformation fields [1] . The technology

ften works well in controllable environments (such as laboratories), be-

ause known targets can be used conveniently, and external conditions,

uch as illumination, vibration, and temperature, are well controlled to

aintain system reliability. With stereo-DIC technology gradually mov-

ng towards real applications, however, several problems caused by un-

ontrolled environments have severely limited its applicability in most

ractical fields. One of the most important challenges involves perform-

ng reliable system calibration in uncontrolled environments. Because

rtificial targets are difficult to apply in an unconstrained scene; more-

ver, inevitable environmental vibration can affect the stability of sys-

em calibration [2] . Calibrating a stereo-DIC system refers to estimating

he internal and external parameters of its stereo vision system. Accord-

ng to the pinhole model [3] , internal parameters comprise the intrinsic

eometry and optical characteristics of its camera component, includ-

ng the focal lengths, principal point, and distortion factors. External
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arameters refer to the extrinsic geometry of the stereo camera system,

ncluding its relative rotation and translation. Considerable research has

esulted in the development of many calibration methods using known

D objects [4] , planar targets [5–10] , unknown space scenes [11–14] ,

tc. 

Planar-target-based calibration techniques are widely used in stereo-

IC owing to their accuracy and operability in controlled environ-

ents [15,16] . Existing methods typically aim to increase the accuracy

f parameters by using a specially designed pattern and/or calibration

lgorithm. A planar target with a marker chessboard pattern was pro-

osed by Chen et al. for calibrating a stereo camera rig using a frame

ptimization strategy and a bundle adjustment (BA) method [8] . Cui

t al. reported a calibration method that minimizes the residual error

n 3D space rather than on the image plane to obtain precise parame-

ers [17] . Jia et al. proposed an accuracy calibration method that de-

ermines the internal parameters by compensating for perpendicularity

nd then estimates external parameters using centroid-based optimiza-

ion [18] . More recently, a planar coding pattern was designed by Li

t al. to calibrate a stereo vision system using a BA model [19] . How-

ver, planar-target-based calibration methods require the size of the pat-

ern to match the size of the field of view (FOV). As such calibration is

ifficult and expensive in uncontrolled environments. This limits the

pplications of these methods. 
rch 2019 
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Fig. 1. Overview of the proposed auto-calibration method for a stereo-DIC sys- 

tem. 

Fig. 2. Triangulation geometry used in our BA for stereo-DIC calibration. 
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Calibrating a stereo-DIC system from an unknown space scene is also

ttractive owing to the advantage of recovering all calibration parame-

ers without using any known pattern [11] . Much research has been de-

oted to this approach, starting in computer vision, and more recently in

he DIC community. Liu et al. proposed a stereo calibration method that

ecomposes external parameters from epipolar geometry determined by

oint correspondences [12] . However, their method requires calibrating

he cameras in advance, and its accuracy is relatively low for stereo-DIC

easurements. Herrera et al. proposed a homography-based method to

ecover all calibration parameters from an unknown planar scene [13] .

uan et al. further developed this method to give closed-form initial val-

es for stereo geometry under the planar assumption, before estimating

he calibration parameters using an optimization algorithm [14] . How-

ver, the planar hypothesis means that the method cannot be used di-

ectly for non-planar deformation measurements. More recently, Shao

t al. calibrated a single-lens 3D video extensometer to measure strain

ccording to a speckle-based calibration algorithm [20] . However, this

ethod is highly dependent on good speckle quality and reliable initial

alue transfer for speckle matching; in addition, it is a local intensity-

ased method and, as such, requires a relatively stable illumination en-

ironment. Furthermore, the speckle must occupy a large part of the

OV. 

In this paper, we propose a generative method for calibrating stereo-

IC systems to overcome the limitations of existing methods. The pro-

osed method not only automatically estimates all calibration param-

ters from unconstrained scene images directly, it can also be used to

uickly correct disturbed external parameters, effectively reducing er-

ors in 3D deformation measurements. Based on inverse depth represen-

ation and an efficient radial distortion model, a robust BA framework is

uilt on feature correspondences by minimizing the re-projection resid-

al in the normalized image domain. To construct correspondences for

ast external parameter correction, a highly concurrent subset track-

ng scheme based on massive feature point initialization is given. Then,

 real-time auto-correction strategy for external parameters is derived

rom the proposed BA framework. Finally, the proposed method is vali-

ated in two 3D deformation measurement experiments. To our knowl-

dge, there are few real-time extrinsic geometry correction algorithms

or stereo-DIC. 

This paper is organized as follows. The proposed BA framework for

tereo-DIC calibration and the auto-correction strategy for external pa-

ameters are presented in Section 2 . The experimental results are given

o verify the proposed method in Section 3 . The advantages and poten-

ial applications for the proposed method are discussed in Section 4 . We

onclude the paper in Section 5 . 

. Principle 

An overview of the proposed calibration method for stereo-DIC is il-

ustrated in Fig. 1 . Based on feature correspondences, a geometric BA is

arefully designed to calibrate a stereo-DIC system reliably using a group

f stereo images throughout the measurement process rather than an ar-

ificial calibration target. According to the calibrated results, a real-time

xternal parameter correction strategy is developed from the BA frame-

ork for dynamic deformation measurements. Details are described in

he following subsections. 

.1. Bundle adjustment of stereo-DIC calibration 

The BA framework is designed with a radial distortion model to

ointly estimate the calibration parameters of the stereo-DIC system.

e accomplish this by introducing the inverse depth representation of

ack-projection and measuring the residual of projection in the normal-

zed image domain. This helps to reduce the complexity of the cost

unction and regularize the scales of the variables to cope with fea-

ures over a wide range of depths. Consequently, the BA can be ro-

ustly built on the unconstrained scene with enough precision for defor-
47 
ation measurements. To introduce our BA, we begin with the radial

istortion. Conventional distortion models used in stereo-DIC calibra-

ion map the points from an undistorted image onto a distorted im-

ge [5,15,20,21] . However, describing the back-projection in an ana-

ytic form is not straightforward because it is difficult to obtain an exact

nalytic inverse function. Instead, we adopt a distorted-to-undistorted

adial distortion model to build our BA in a new way, avoiding any

oss to its analytic form, which is essential for non-linear optimization.

ecause this distortion model maps the points from a distorted image

nto an undistorted image directly, we found that it offers improved

fficiency for both BA optimization and 3D reconstruction, as well as

itigating accuracy loss due to distortion rectification. 

We follow the reasonable assumption that aligns the world coordi-

ate system to the left camera coordinate frame. The geometry used in

his study is depicted in Fig. 2 . Let u be the left feature in a given cor-

espondence with homogeneous coordinates. With the radial distortion

odel, its undistorted position in a normalized image domain is analyt-

cally calculated by 

 = 𝐾 

−1 𝐮  ( 𝐾 

−1 𝐮 ) , (1)

 ( ⋅) = 1 + 𝑘 1 || ⋅ ||2 + 𝑘 2 || ⋅ ||4 , (2)

here K is the intrinsic matrix of the camera (here, we suppose that

he skew factor is zero), and  ( ⋅) is the radial distortion function. The

ack-projection of feature u to its space coordinate is thus parameterized

y its inverse depth w with an analytic form of x / w . Then, the back-
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rojected point is mapped into the right normalized image domain by a

rojection function  as follows: 

( 𝐱; 𝐫, 𝐭, 𝑤 ) = ⟨ ( 𝐫) 𝐱( 𝐾, 𝑘 1 , 𝑘 2 ) + 𝑤 𝐭 ⟩, (3)

here r and t respectively denote the relative rotation and translation

rom the left camera to right camera,  ( ⋅) is the Rodrigues formula that

ransforms the rotation vector to a matrix, and ⟨ · ⟩ is the normalization

perator from ( x, y, z ) T to ( x / z, y / z , 1) T . 

As shown in Fig. 2 , the discrepancy between the projected point and

he undistorted coordinate x ′ of the right feature u ′ in the normalized

mage, which is calculated with the same method as that in Eq. (1) , is

sed as a residual metric for the proposed BA. For all extracted feature

orrespondences { 𝐮 𝑖𝑗 ↔ 𝐮 ′
𝑖𝑗 
} , the proposed BA framework can be formu-

ated by minimizing the residuals of all the projected coordinates as 

𝑟𝑔𝑚𝑖𝑛 
𝐊 , 𝐫 , 𝐭 , 𝐰 

𝑚 ∑
𝑗=1 

𝑛 ∑
𝑖 =1 

 

(
𝐱 ′
𝑖𝑗 
( 𝐾 

′, 𝑘 ′1 , 𝑘 
′
2 ) − ( 𝐱 𝑖𝑗 ( 𝐾, 𝑘 1 , 𝑘 2 ); 𝐫, 𝐭, 𝑤 𝑖𝑗 ) 

)
, (4)

here m is the number of stereo images, n is the number of correspon-

ences in each stereo image,  ( ⋅) indicates a loss function, K is the set of

nternal parameters { 𝑓 𝑥 , 𝑓 𝑦 , 𝑐 𝑥 , 𝑐 𝑦 , 𝑘 1 , 𝑘 2 ; 𝑓 ′𝑥 , 𝑓 
′
𝑦 
, 𝑐 ′

𝑥 
, 𝑐 ′

𝑦 
, 𝑘 ′1 , 𝑘 

′
2 } , and w is the

et of inverse depths { w ij }. Because of feature correspondences, we use

he Levenberg–Marquardt algorithm [22,23] to minimize the pseudo-

uber loss function in [24] , instead of the squared loss, for robustness to

ossible outliers. It should be noted that the proposed model also works

or system calibration using a single image pair. However, the experi-

ents described in Section 3.1 show that using a stereo image sequence

s better for two reasons: it makes the proposed BA more robust to noisy

mage data, reducing parameter estimation errors; and it enhances the

apacity of the triangulation model, defined by the calibration parame-

ers, to cope with out-of-plane deformations, such that the 3D shape at

ach measurement step can be recovered optimally. Consequently, the

ystem is more precise. 

The well-known SURF method [25] is employed to build feature cor-

espondences { 𝐮 𝑖𝑗 ↔ 𝐮 ′
𝑖𝑗 
} . The SURF algorithm is not only capable of fast

etection of features with sub-pixel location, it also sensitive to both

lob-like and corner-like features. This ensures that our BA can use a

et of full-FOV distributed feature correspondences from the scene for

tereo-DIC applications. This is critical to obtain accurate distortion fac-

ors and principle points. In addition, a robust local similarity invariant

epresentation makes the external parameter correction strategy fast, as

xplained in the next section. 

For the initial values of the proposed BA framework, the focal lengths

an be initialized as 𝑓 𝑥 = 

𝑊 

𝑆 𝑥 
𝑓 and 𝑓 𝑦 = 

𝐻 

𝑆 𝑦 
𝑓, where f is the physical fo-

al length, ( S x , S y ) is the sensor size, and ( W, H ) is the image width

nd height. The principle point can be initialized as the image center

 

𝑊 

2 , 
𝐻 

2 ) . The radial distortion factors are initialized to zero. The initial

xternal parameters can be estimated in two ways: according to the ini-

ial arrangement of the cameras, the relative rotation and translation

an be initialized as (0, 𝜃, 0) T and ( B , 0, 0) T , where 𝜃 and B are the

re-estimations for the stereo angle and width of the baseline, respec-

ively; or they can be determined with a fast linear decomposition al-

orithm [12] , which can be performed conveniently after the feature

orrespondences are constructed. The latter is recommended because

t gives an initial estimation that is closer to the optimal parameters to

peed up the optimization. The initialization for inverse depths is heuris-

ic. For flat calibration scenes, the inverse depths can be initialized with

 unified value determined from the work distance. If the features used

re detected from an unconstrained scene, it is recommended to assign

 random inverse depth between 0.01 and 1.0 to each feature point. 

.2. Real-time auto-correction of external parameters 

In some practical applications for stereo-DIC, environment vibra-

ion is unavoidable while measuring deformations. This can change the

xternal geometry of a calibrated stereo-DIC system, leading to large
48 
easurement errors. Therefore, disturbed external parameters should

e corrected with enough accuracy to ensure the precision of defor-

ation measurements. However, we cannot interrupt the consecutive

easurement process to recalibrate the stereo camera using the planar

arget. Therefore, we here propose a real-time auto-correction strategy

o overcome the disadvantages of existing methods for high-precision

eformation measurements in dynamic and/or uncontrollable environ-

ents. We found that using the current image pair suffices to perform

 reliable external parameter correction during the current measure-

ent step, provided that the system has been calibrated by our BA. This

s for two reasons: the calibrated data gives a good initialization for

oth external parameters and inverse depths; and cameras with prime

enses allow us to re-estimate disturbed external parameters with the

re-calibrated, fixed internal parameters [9,12,16] . 

Because the correction should be performed during the deformation

alculation, it is rather time-consuming to re-detect and re-match SURF

eatures in the deformed image sequence. Fortunately, every SURF point

hat we used has a salient intensity feature and good intensity gradi-

nt response within its neighborhood. Therefore, a high-precision sub-

et registration scheme with the inverse compositional Gauss–Newton

IC-GN) algorithm [26–28] is suitable for tracking the accurate position

f each feature in a sequence of deformed images. Considering the con-

inuity of deformation, the matched SURF features can be used as the

nitial values for the IC-GN algorithm to achieve fast feature matching.

n contrast to the conventional subset matching method where the ini-

ial value is transferred from a single seed point [26,27] , feature point

nitialized subset matching is more reliable and essentially concurrent,

ecause it is performed independently at each point. Thus, it is possible

o construct the correspondences with a real-time massive-point match-

ng scheme. The image on the left in Fig. 2 at the initial stage is given

s a reference image. The details of the proposed correction strategy are

escribed as follows: 

Step 1: Key point preparation. Because the SURF features we ob-

ained in the reference image have sub-pixel coordinates, we truncate

heir coordinates to obtain a set of key points with integer coordinates

o track correspondences. In this way, the reference subset for each key

oint can be obtained directly from the reference image, avoiding su-

erfluous intensity interpolation due to the sub-pixel position. 

Step 2: Massive-point tracking. We want to compute the displace-

ent for each key point to track the feature correspondences. Displace-

ent refers to the position difference of a key point in the reference and

urrent stage. Here, it is computed by using subset matching, which

ncludes temporal matching in left image and stereo matching in right

mage. The pipeline is illustrated with the forward solid arrows in Fig. 3 .

he IC-GN algorithm with a first-order shape function is recommended

or subset matching. The critical operation in this step is to select the

mage patch centered on the matched SURF feature as the target subset

or each key point. This is implemented by resampling the current im-

ge using biquintic spline interpolation. In fact, this also gives the initial

uess for the displacement that is to be estimated. Let f and g be the in-

ensity at position ( i, j ) in the reference and target subsets, respectively,

nd W be the shape function. The optimal displacement of a key point

s refined by solving the normalized inverse compositional least-squares

roblem with the Gauss–Newton method: 

𝑟𝑔𝑚𝑖𝑛 
Δ𝐩 

∑
( 𝑖,𝑗) 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑓 ( 𝐖 ( 𝑖, 𝑗; Δ𝐩 )) − 𝑓 √ ∑

( 𝑖,𝑗) [ 𝑓 ( 𝑖, 𝑗) − 𝑓 ] 2 
− 

𝑔( 𝐖 ( 𝑖, 𝑗; 𝐩 )) − 𝑔̄ √ ∑
( 𝑖,𝑗) [ 𝑔( 𝑖, 𝑗) − 𝑔̄ ] 2 

⎤ ⎥ ⎥ ⎥ ⎦ 

2 

, (5)

here 𝑓 , ̄𝑔 are the mean intensity value of the two subsets, p is the shape

arameters with six elements (viz., the displacement and its gradients),

nd Δp is the shape parameter update being estimated. The details for

q. (5) can be found in [27] . The advantage of the inverse compositional

orm objective lies in the evaluation of the steepest descent image on

he reference subset, which remains constant across iterations. Because

oth temporal and stereo matching can be simultaneously initialized
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Fig. 3. Massive-point concurrent subset matching scheme for a stereo image. 

The matched points are rendered with the same color. 
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Table 1 

Results of calibrated internal parameters. 

Parameter Our BA method Chessboard method 

left right left right 

f x 2401.75 2403.51 2495.29 2498.34 

f y 2398.45 2397.26 2497.51 2487.14 

c x 632.80 630.92 590.44 597.15 

c y 500.74 501.10 473.44 475.86 

k 1 0.1845 0.1800 -0.1701 -0.1616 

k 2 -0.3901 -0.4560 0.0016 0.0019 

Table 2 

Results of calibrated external parameters. 

Parameter Our BA method Chessboard method DLD method 

r T ( ∘) (-0.04, 48.52, -0.11) (0.45, 45.77, -0.19) (1.09, 51.16, 1.29) 

t T ( 1.00, 0.01, -0.43) (1.00, 0.01, -0.44) (1.00, 0.01, -0.58) 

l  

r  

t  

t  

b  

m

3

 

d  

p  

d  

b  

t  

s  

i

3

 

v  

a  

s  

o  

s  

a  

p  

t  

T  

m  

l

3  

d  

d  

n  

i  

r  

t  

b  

m  

t  

n  

m

 

c  
ith the tracked SURF features (schematically shown as dashed arrows

n Fig. 3 ), this step can be sped up on a GPU platform [29] to achieve

assive-point matching with real-time performance. Finally, a set of

ew correspondences { 𝐮 𝑖 ↔ 𝐮 ′
𝑖 
} is extracted from the stereo image at

he current stage. 

Step 3: External parameter correction. The output correspondences

n Step 2 inherit the matching relationship from the initially matched

URF correspondences (the matched points are marked by the same

olor in Fig. 3 ). They can be directly used to recalibrate the exter-

al geometry of the stereo-DIC system. With the calibrated cameras in

ection 2.1 , the feature correspondences are explicitly transformed to

heir normalized positions via Eq. (1) to obtain a set of fixed, normal-

zed correspondences { 𝐱 𝑖 ↔ 𝐱 ′
𝑖 
} in advance. Therefore, a concise non-

inear model for external parameter correction can be derived from the

roposed BA framework as follows: 

𝑟𝑔𝑚𝑖𝑛 
𝐫 , 𝐭 , 𝐰 

𝑛 ∑
𝑖 =1 

𝛿𝑖  

(
𝐱 ′
𝑖 
− ⟨ ( 𝐫) 𝐱 𝑖 + 𝑤 𝑖 𝐭 ⟩), (6)

here 𝛿𝑖 = 1 if the i -th correspondence is tracked successfully; other-

ise, it is 0. The initial values for Eq. (6) can adopt the results of the pre-

ious calibration step, such that the non-linear equation can be solved

ore efficiently by explicit using the sparse Schur complement. The cor-

ected external parameters can then be used to recover the object shape

t the current stage. 3D displacement at each reconstructed point is ul-

imately estimated by comparison to the reference coordinates with a

ommon scale in the common coordinate system. 

Because we assume the object shape is recovered in a reference frame

ligned to the left camera frame, 3D reconstruction can only be per-

ormed locally using the corrected external parameters if the pose of

he left camera is not stable. To recover 3D shapes in a common coordi-

ate system, it is necessary to determine the relative rotation and trans-

ation between the common and current reference frame. A common

ule of thumb is to select a set of reference points on a stable, separate

rame in the FOV. To select the reference points, multi-scale detectors,

uch as SURF, are recommended, because the extracted scale-invariant

oints will be more robust to possible blur and illumination variation.

nother practice involves setting some fixed targets, such as circular or

ross markers, on a distinct reference object. The artificial targets can

e tracked stably with high positioning accuracy. This method is more

seful for controlled reference objects, such as a vibration table. Because

eference points are assumed to be fixed, a set of linear equations with

ine unknowns (six for rotation and three for translation) can be estab-
49 
ished according to their spatial positions in the common and current

eference frames. The transformation from the current reference frame

o the common coordinate system can be easily determined by solving

he linear equations. Finally, the locally reconstructed object points can

e mapped into the common coordinate system for displacement esti-

ation. 

. Experimental results 

In this section, the performance of the proposed BA framework is

iscussed based on a real static experiment, described in Section 3.1 . The

erformance of the auto-correction strategy for external parameters is

escribed in Section 3.2 . The precision of stereo-DIC systems calibrated

y our method was compared to that of existing methods, by adopting

he same program module for performing the DIC algorithm [26,30] and

train calculation [31] to ensure that the non-calibration errors were

dentical. 

.1. Static deformation measurement 

A single-lens stereo-DIC system (with a light path similar to the de-

ice in [20] ) was used in this experiment to measure the deformation of

 simply supported plate subjected to out-of-plane load. The designed

tereo angle of our device is 48 ∘. The focal length is 12 mm and the res-

lution is 1280 × 1024 pixels. The work distance is 135 mm and the

ize of FOV is 35 mm × 55 mm. The specimen was made of Inconel 718

lloy and was 150 mm × 30 mm × 3 mm in size. Its top surface was

ainted with a speckle pattern. A strain gage was adhered to the bot-

om surface at mid-span. The experimental setup is shown in Fig. 4 (a).

o compare the results, the system was calibrated with the following

ethods: chessboard method (9 × 6 corners with 3 mm spacing), direct

inear decomposition (DLD) [12] , and the proposed BA. 

.1.0.1. Calibration results. Our BA used five stereo images (two non-

eformed and three deformed image pairs), and 799 SURF correspon-

ences were selected in each stereo image. The correspondences in a

on-deformed stereo image are shown in Fig. 4 (b). For chessboard cal-

bration, 50 target poses were captured to obtain stable calibration pa-

ameters. The DLD method used the internal parameters estimated by

he chessboard and the correspondences in BA calibration. The cali-

rated internal parameters for the proposed method and the chessboard

ethod are listed in Table 1 . The external parameters produced by the

hree methods are listed in Table 2 . The relative translation vectors were

ormalized because the true-to-scales of translations obtained by our

ethod and the DLD method were unknown. 

Table 1 shows that the results of both methods are consistent ex-

ept for the radial distortion factors. The main reason for this is that
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Fig. 4. (a) Experimental setup and (b) matched 

SURF feature correspondences. 

Fig. 5. Calibration parameter errors with increasing image noise. 

Fig. 6. Results of static error evaluation. 
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he employed radial distortion models differed, as mentioned above.

able 2 shows that the rotation vector optimized by our BA is closer

o the designed angle vector (0 ∘, 48 ∘, 0 ∘) T . In terms of re-projection,

he error of our method is 0.02 pixels, which is better than that of the

hessboard method (0.08 pixels), and much better than that of the DLD

ethod (0.38 pixels). 

.1.0.2. Performance with respect to the noise level. We investigated the

erformance with respect to the noise level using a stereo image se-

uence and a single image pair. The image sequence was composed by

he foregoing five stereo images; the single image pair was the first one
50 
n the sequence. Similarly, 799 correspondences were constructed for

ach stereo image. We used the previous BA calibrated parameters as a

round truth. Gaussian noise with zero mean was added to each feature.

he standard deviation (SD) was varied from 0.1 pixels to 1.5 pixels to

imulate noise conditions. For each noise level, we performed 200 in-

ependent calibration trials. The parameters estimated each trial were

ompared to the ground truth. We computed the relative error for each

nternal parameter and the two-norm-based relative error for r and t .

he average results are shown in Fig. 5 . As expected, all errors increased

inearly with the noise level added to the feature points. (The error for

ach distortion parameter is not shown, but has the same property.) By

omparing errors in both internal and external parameters, we can see

hat using an image sequence helps to improve the anti-noise perfor-

ance of the proposed BA framework significantly. 

.1.0.3. Performance test on strain measurement. The proposed method

as first validated by evaluating static errors on 60 non-loaded images,

nd then by conducting 10-step loading measurements. We measured

he strain data using the three calibrated stereo-DIC systems. The subset

ize was 31 × 31 pixels, and the window size for strain computation

as 9 × 9 points. A small rectangular region with a size close to that

f the gage was selected according to pre-drawn positioning lines. We

stimated the average strain values in this small region and compared

hese to the standard values. The static errors are illustrated in Fig. 6 .

he measured strain values and their differences relative to the standard

alues are shown in Fig. 7 . Comparisons of both static and measurement

rrors are listed in Table 3 . As expected, the differences among mea-

urement systems with different calibration parameters are systematic.
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Fig. 7. (a) Measured strain values and (b) differences in measurement results between the strain gage and stereo-DIC systems calibrated by the proposed BA, 

chessboard, and DLD methods. 

Table 3 

Comparisons of static and measurement errors ( 𝜇𝜀 ). 

Calibration method Static error Measurement error 

error range SD maximum difference SD 

BA [-27, 21] 10.5 48.9 26.4 

Chessboard [-27, 32] 13.0 69.6 33.7 

DLD [-35, 55] 29.8 149.8 66.3 
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or static error evaluation, the mean errors for the systems calibrated

y the proposed BA, chessboard, and DLD methods were 1.5 𝜇𝜀 , 2.0

𝜀 , and 14.8 𝜇𝜀 , respectively. For the proposed BA and the commonly

sed chessboard calibration, we can see that static errors of the systems

alibrated by both methods are coincident and stable; a comparison of

hese measurement errors shows that the former is slightly more ac-

urate than the latter. By contrast, both static and measurement errors

ith the DLD-calibrated system were rather large in this well-controlled

xperiment (the maximum strain value is approximately 1183 𝜇𝜀 ). Ad-

itionally, Fig. 7 (b) illustrates the errors of the system calibrated by the

LD method, which increase considerable with the load after the third

oad step. The main reason for this is that only a single stereo image was

sed for external parameter calibration. Consequently, the error caused

y out-of-plane deformation could not be restrained effectively. Thus,

he proposed BA is a feasible and trustworthy calibration method for

tereo-DIC. 

.2. Validation of external parameter correction strategy 

The performance with respect to the matching error was validated,

ollowed by a dynamic experiment to validate its effectiveness with on-

ine deformation measurements. 

.2.1. Performance with respect to the feature matching error 

Before evaluating the performance with respect to the matching er-

or, the stability of the proposed external parameter correction method

as investigated. The non-loaded image sequence in Section 3.1 was

sed in this test. Again, 799 correspondences were constructed from

he first stereo image and tracked in subsequent stereo images, where

he subset size was 21 × 21 pixels. The external parameters were esti-

ated according to the tracked correspondences and then compared to

he BA-produced initial values in Table 2 . The two-norm-based relative

rrors for rotation and translation vectors were measured. The results

re shown in Fig. 8 (a). The mean errors of the estimated relative ro-
51 
ation and translation vector were 1 . 80 × 10 −3 with SD 6 . 73 × 10 −4 and

 . 21 × 10 −3 with SD 8 . 73 × 10 −4 , respectively. 

To examine the influence of the matching error, Gaussian noise with

ero mean was added to the feature correspondences in the first non-

oaded stereo image. We varied the SD from 0.1 pixels to 5.0 pixels to

imulate the matching error. For each error level, 200 independent tri-

ls were performed. The estimated parameters were compared to those

ith no additional errors. The average relative errors were computed

nd shown in Fig. 8 (b). The errors with external parameter estimation

ncrease linearly with the matching error level, and the error in relative

ranslation is lower than that in relative rotation. 

.2.2. Performance evaluation with dynamic strain measurements 

A shock test with a steel box girder was conducted. The actual goal

f this test is to measure the dynamic strain response. Here, we used it

o evaluate the proposed external parameter correction method by com-

aring the stereo-DIC measured results to those recorded by the strain

age. The span of the girder was 1500 mm and the size of the cross pro-

le was 100 mm × 50 mm × 5 mm. The girder was loaded by a mechan-

cal shock system composed of a lifting motor and a mass block. A strain

age was adhered at the lower edge on the reverse side of the girder.

he stereo-DIC system comprised two high-speed cameras (FASTCAM

A3, 50 mm lens) with a resolution of 1024 × 1024 pixels. The camera

rame rate was set to 1000 Hz to capture images during the lifting im-

act test. The size of the region of interest was 250 mm × 100 mm. The

etup for the experiment is shown in Fig. 9 (a). The deformation data

as computed by processing the image data on-line. Considering the

ransmission delay incurred by downloading images from both cameras

o the computer’s memory, the system estimated the strain data every

00 ms from the moment at maximum impact load. For that, 18 stereo

mages were finally downloaded and used. Similar to the test described

n Section 3.1 , the average strain in a small region was calculated for

omparison with the values of the strain gage. A total of 882 point cor-

espondences were used in this experiment. Massive-point tracking was

xecuted on a GPU platform (NVIDIA Quadro M2000M), where the size

f the subset was 41 × 41 pixels. The proposed correction algorithm was

mplemented using C++ language and executed on a laptop (Intel(R)

eon(R) CPU with an E3-1535M 2.90 GHz processor and 8 GB RAM). 

The stereo-DIC was calibrated with the following schemes: (1) planar

arget calibration with a chessboard (11 ×8 corners, 25 mm spacing),

hich could only be performed before the loading; (2) one-shot cali-

ration using the proposed BA described in Section 2.1 , which was also

xecuted before loading; and (3) based on the calibrated results from

cheme 2, external parameters were corrected before every strain cal-
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Fig. 8. (a) Results of stability evaluation and (b) errors for rotation and translation as a result of increasing the matching error. 

Fig. 9. (a) Experimental setup and (b) mea- 

sured strain values. The dashed curve is the 

complete strain time history recorded by the 

gage. Several values of the strain gage are high- 

lighted with yellow symbols for comparison. 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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ulation step using the proposed strategy. Fig. 9 (b) shows the measured

esults. Compared to the values of strain gage, the maximum absolute

rrors of Schemes 1 and 2 were 1081.4 𝜇𝜀 with an SD of 620.9 𝜇𝜀 and

94.6 𝜇𝜀 with an SD of 601.5 𝜇𝜀 , respectively. However, the maximum

bsolute error of Scheme 3 was only 378.5 𝜇𝜀 with an SD of 264.2 𝜇𝜀 .

n addition, the evaluated static errors before impact loading were all

ess than 200.0 𝜇𝜀 . These results show that the measurement errors of a

tereo-DIC with corrected external parameters are clearly below those of

ystems calibrated by one-shot calibration schemes and closer to static

rrors. A lower SD implies that the measurement system calibrated by

cheme 3 is more stable. The main reason for the difference in accuracy

s that the impact load caused ground vibrations, especially when load-

ng began —when the load amplitude was at its maximum (the strain

urve in Fig. 9 (b) also shows this phenomenon). The ground vibration

isturbed the calibrated external geometry, resulting in large errors in

train measurements when the external parameters were not corrected.

he efficiency can be verified by the average time cost for all correc-

ion stages. The average time spent for both temporal and stereo match-

ng was approximately 8 ms; each correction step was completed in an

verage of 36 ms. The correction strategy was executed at a speed of

pproximately 23 Hz on our test laptop, which is sufficient for on-line

tereo-DIC measurements. 

The experiment demonstrates that the proposed strategy signifi-

antly reduces measurement errors incurred by unstable external pa-

ameters of a stereo-DIC system with real-time speed. Meanwhile, it

 

t  

52 
llustrates the necessity of external parameter correction for dynamic

eformation measurements. 

. Discussion 

The calibration of stereo-DIC has certain peculiarities compared to

rdinary stereo vision calibration, which is determined by the specialty

f its applications. Especially for applications in industrial and engineer-

ng fields, there are several inherent attributes, such as a large struc-

ure size, successive measurements, unavoidable environment vibration,

tc., lead to existing calibration methods cannot be effectively applied

o stereo-DIC technology. This is because, on the one hand, large-scale

easurements lead to several problems for existing stereo calibration

ethods of stereo-DIC, such as operational difficulties, poor accuracy,

nd high costs. On the other hand, the cameras of the stereo-DIC system

ften have a wide baseline. As such, camera components cannot be con-

ected rigidly in real applications and calibrated external parameters

an be disturbed during measurements due to environment vibrations

r improper operation. To address these problems, an auto-calibration

nd real-time extrinsic geometry correction framework for stereo-DIC

as proposed. The method is advantageous for the following reasons: it

ffers automatic calibration of a stereo-DIC system with high accuracy;

t is robust to noise and mismatched correspondences; it does not de-

end on the real size of the measured object; and it offers real-time and

ccurate external geometry correction. 

For the proposed auto-calibration method, it should be noted that the

rue-to-scale of the body being measured cannot be recovered directly.
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owever, it can be determined easily using a scale bar or target with a

nown size when necessary. The proposed real-time external parameter

orrection method was verified in experiments, which demonstrated its

ffectiveness at reducing measurement errors with dynamic measure-

ents. Indeed, the proposed system may be more useful for long-term

ynamic measurements. Owing to the ample volume of image data for

uch measurements, the cost of transferring and storing all the source

ata is often expensive. On-line computation is thus desirable to cap-

ure deformation data of interest for reducing storage loads. However,

nvironmental vibrations can affect the stability of the calibrated ex-

ernal geometry, leading to considerable measurement errors and even

nvalid deformation data. By applying the proposed real-time correction

ethod, however, measurement errors caused by unstable external pa-

ameters will be reduced significantly, ensuring the validity of the data.

n addition, the computational cost incurred by corrections is quite low,

nd will not affect the efficiency of on-line computations. This improves

he practicability of stereo-DIC technology for high-precision dynamic

easurements. 

There are potential stereo-DIC applications for the proposed method.

or example, it could be used to calibrate a multi-camera stereo-DIC sys-

em automatically [16,32] . It is difficult to use existing methods, such

s a planar pattern, to calibrate a multi-camera system pair-wisely, and

recise calibrations cannot easily be ensured. However, the proposed

ethod could calibrate each pair of cameras efficiently and optimize

he external parameters of the sub-systems jointly to improve the over-

ll calibration accuracy. As another potential application, the proposed

ethod could be employed to calibrate a microscopic stereo-DIC sys-

em [33] . The cost of small but highly precise calibration targets is very

igh, and planar targets need be controlled by precise instruments dur-

ng calibration. Therefore, the proposed method could also facilitate the

evelopment of microscopic stereo-DIC technology. 

. Conclusion 

This paper proposed a new approach based on geometric triangula-

ion to calibrate a stereo-DIC system for deformation measurements. The

roposed auto-calibrating BA framework was built on inverse depth pa-

ameterized back-projection in analytic form to model and process any

eature in an unconstrained scene. Compared to other calibration meth-

ds, the proposed BA framework accurately calibrates a stereo-DIC sys-

em from the scene of a measurement FOV directly. We demonstrated

he feasibility of correcting disturbed external parameters in real time by

implifying our BA to a concise form. We achieved this by explicitly map-

ing the correspondences tracked by the proposed concurrent matching

cheme to their undistorted, normalized positions. Finally, we evaluated

he performance of the proposed calibration method by conducting two

eal stereo-DIC experiments. Our results indicate that, with the proposed

pproach, stereo-DIC has the potential to be applied more widely, such

s for large structure measurements, structural health monitoring, dy-

amic tests, and engineering and biological material measurements. 
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